Picturing The Sun’s Magnetic Field

Image Credit: NASA/SDO/AIA/LMSAL

Image Credit: NASA/SDO/AIA/LMSAL

March 15, 2016 – This illustration lays a depiction of the sun’s magnetic fields over an image captured by NASA’s Solar Dynamics Observatory on March 12, 2016. The complex overlay of lines can teach scientists about the ways the sun’s magnetism changes in response to the constant movement on and inside the sun.

Note how the magnetic fields are densest near the bright spots visible on the sun – which are magnetically strong active regions – and many of the field lines link one active region to another.

This magnetic map was created using the Potential Field Source Surface (PFSS) model – a model of the magnetic field in the sun’s atmosphere based on magnetic measurements of the solar surface. The underlying image was taken in extreme ultraviolet wavelengths of 171 angstroms. This type of light is invisible to our eyes, but is colorized here in gold.

SDO is a 3-axis stabilized spacecraft, with two solar arrays, and two high-gain antennas. The spacecraft includes three instruments: the Extreme Ultraviolet Variability Experiment (EVE) built in partnership with the University of Colorado at Boulder’s Laboratory for Atmospheric and Space Physics (LASP), the Helioseismic and Magnetic Imager (HMI) built in partnership with Stanford University, and the Atmospheric Imaging Assembly (AIA) built in partnership with the Lockheed Martin Solar & Astrophysics Laboratory. Data collected by the spacecraft is made available as soon as possible after it is received.

Goddard built, operates and manages the SDO spacecraft for NASA’s Science Mission Directorate in Washington, D.C. SDO is the first mission of NASA’s Living with a Star Program. The program’s goal is to develop the scientific understanding necessary to address those aspects of the sun-Earth system that directly affect our lives and society.