Hubble Helps Find Light-Bending World With Two Suns

This artist’s impression shows a gas giant planet circling the two red dwarf stars in the system OGLE-2007-BLG-349, located 8 000 light-years away. Image Credit: NASA, ESA, and G. Bacon (STScI)

This artist’s impression shows a gas giant planet circling the two red dwarf stars in the system OGLE-2007-BLG-349, located 8 000 light-years away. Image Credit: NASA, ESA, and G. Bacon (STScI)

September 22, 2016 – A distant planet orbiting two stars, found by its warping of spacetime, has been confirmed using observations from the NASA/ESA Hubble Space Telescope. The planet’s mass caused what is known as a microlensing event, where light is bent by an object’s gravitational field. The event was observed in 2007, making this the first circumbinary planet to be confirmed following detection of a microlensing event.

The majority of exoplanets detected so far orbit single stars. Only a few circumbinary planets — planets orbiting two stars — have been discovered to date. Most of these circumbinaries have been detected by NASA’s Kepler mission, which uses the transit method for detection.

This newly discovered planet, however, is very unusual. “The exoplanet was observed as a microlensing event in 2007. A detailed analysis revealed a third lensing body in addition to the star and planet that were quite obvious from the data,” says David Bennett from the NASA Goddard Space Flight Center, USA, lead author of the study.

The event, OGLE-2007-BLG-349, was detected during the Optical Gravitational Lensing Experiment (OGLE). OGLE searches for and observes effects from small distortions of spacetime, caused by stars and exoplanets, which were predicted by Einstein in his theory of General Relativity. These small distortions are known as microlensing.

However, the OGLE observation could not confirm the details of the OGLE-2007-BLG-349 event on its own, especially the nature of the third, unknown lensing body. A number of models could have explained the observed light curve.

Now, nine years later, astronomers have used ultra-sharp images from the Hubble Space Telescope to determine that the system consists of a Saturn-mass planet circling two diminutive, faint stars in a tight orbit around each other. The system resides 8,000 light-years away from Earth.

The planet orbits roughly 300 million miles from the stellar duo, about the distance from the asteroid belt to our sun. It completes an orbit around both stars roughly every seven years. The two red dwarf stars are a mere 7 million miles apart, or 14 times the diameter of the moon’s orbit around Earth.

The sharpness of the Hubble images allowed the research team to separate the background source star and the lensing star from their neighbors in the very crowded star field. The Hubble observations revealed that the starlight from the foreground lens system was too faint to be a single star, but it had the brightness expected for two closely orbiting red dwarf stars, which are fainter and less massive than our sun.

“So, the model with two stars and one planet is the only one consistent with the Hubble data,” Bennett said.

Bennett’s team conducted the follow-up observations with Hubble’s Wide Field Planetary Camera 2. “We were helped in the analysis by the almost perfect alignment of the foreground binary stars with the background star, which greatly magnified the light and allowed us to see the signal of the two stars,” Bennett explained.

“OGLE has detected over 17,000 microlensing events, but this is the first time such an event has been caused by a circumbinary planetary system,” explains Andrzej Udalski from the University of Warsaw, Poland, co-author of the study.

This pioneering discovery suggests some intriguing possibilities. While Kepler is more likely to detect planets with small orbits — and indeed all the circumbinary planets it discovered are very close to the lower limit of a stable orbit — microlensing allows planets to be found at distances far from their host stars.

“This discovery, suggests we need to rethink our observing strategy when it comes to stellar binary lensing events,” explains Yiannis Tsapras, co-author of the study from the Astronomisches Recheninstitut in Heidelberg, Germany. “This is an exciting new discovery for microlensing”.

Now that the team has shown that microlensing can successfully detect events caused by circumbinary planets, Hubble could provide an essential role in this new realm in the continued search for exoplanets.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.