Rosetta Preparing For Perihelon

The orbit of Comet 67P/Churyumov–Gerasimenko and its approximate location around perihelion, the closest the comet gets to the Sun. The positions of the planets are correct for August 13, 2015. Image Credit: ESA

The orbit of Comet 67P/Churyumov–Gerasimenko and its approximate location around perihelion, the closest the comet gets to the Sun. The positions of the planets are correct for August 13, 2015. Image Credit: ESA

July 13, 2015 – Rosetta’s investigations of its comet are continuing as the mission teams count down the last month to perihelion – the closest point to the Sun along the comet’s orbit – when the comet’s activity is expected to be at its highest.

Rosetta has been studying Comet 67P/Churyumov–Gerasimenko for over a year now, with observations beginning during the approach to the comet in March 2014. This included witnessing an outburst in late April 2014 and the revelation of the comet’s curious shape in early July.

This single frame Rosetta navigation camera image of Comet 67P/Churyumov-Gerasimenko was taken on June 25, 2015 from a distance of 168 km from the comet centre. The image has a resolution of 14.3 m/pixel and measures 14.6 km across. Image Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

This single frame Rosetta navigation camera image of Comet 67P/Churyumov-Gerasimenko was taken on June 25, 2015 from a distance of 168 km from the comet centre. The image has a resolution of 14.3 m/pixel and measures 14.6 km across. Image Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

After arriving at a distance of 100 km from the double-lobed comet on August 6, Rosetta has spent an intense year analysing the properties of this intriguing body – the interior, surface and surrounding dust, gas and plasma.

Comets are known to be made of dust and frozen ices. As these ices are warmed by the Sun, they turn directly to vapour, with the gases dragging the comet’s dust along with it. Together, the gas and dust create a fuzzy atmosphere, or coma, and often-spectacular tails extend tens or hundreds of thousands of kilometres into space.

While ground-based observations can monitor the development of the coma and tail from afar, Rosetta has a ringside seat for studying the source of this activity directly from the nucleus. One important aspect of Rosetta’s long-term study is watching how the activity waxes and wanes along the comet’s orbit.

Astronomers using ESO’s ground-based Very Large Telescope (VLT) in Chile are watching the development of Comet 67P/Churyumov-Gerasimenko’s coma and tail from Earth. This image is based on data acquired on May 22, 2015. The comet’s dusty coma and tail is swept away from the Sun, which is towards the left of the image in this orientation. The tail can be seen to stretch at least 120 000 km in this relatively shallow image. Image Credit: Colin Snodgrass / Alan Fitzsimmons / ESO

Astronomers using ESO’s ground-based Very Large Telescope (VLT) in Chile are watching the development of Comet 67P/Churyumov-Gerasimenko’s coma and tail from Earth. This image is based on data acquired on May 22, 2015. The comet’s dusty coma and tail is swept away from the Sun, which is towards the left of the image in this orientation. The tail can be seen to stretch at least 120 000 km in this relatively shallow image. Image Credit: Colin Snodgrass / Alan Fitzsimmons / ESO

The comet has a 6.5 year commute around the Sun from just beyond the orbit of Jupiter at its furthest, to between the orbits of Earth and Mars at it closest.

Rosetta rendezvoused with the comet around 540 million km from the Sun. Today, 13 July, a month from perihelion, this distance is much smaller: 195 million km. Currently travelling at around 120 000 km/h around their orbit, Rosetta and the comet will be 186 million km from the Sun by 13 August.

“Perihelion is an important milestone in any comet’s calendar, and even more so for the Rosetta mission because this will be the first time a spacecraft has been following a comet from close quarters as it moves through this phase of its journey around the Solar System,” notes Matt Taylor, ESA’s Rosetta project scientist.

“We’re looking forward to reaching perihelion, after which we’ll be continuing to monitor how the comet’s nucleus, activity and plasma environment changes in the year after, as part of our long-term studies.”

The European Space Agency recently confirmed that its Rosetta mission will be extended until the end of September 2016. During the extended mission, the team will use the experience gained in operating Rosetta in the challenging cometary environment to carry out some new and potentially slightly riskier investigations, including flights across the night-side of the comet to observe the plasma, dust, and gas interactions in this region, and to collect dust samples ejected close to the nucleus.

As the comet recedes from the Sun, the solar-powered spacecraft will no longer receive enough sunlight to operate efficiently and safely, and the spacecraft will most likely be landed on the surface of Comet 67P/Churyumov-Gerasimenko.

“The most logical way to end the mission is to set Rosetta down on the surface,” said Patrick Martin, Rosetta Mission Manager. “But there is still a lot to do to confirm that this end-of-mission scenario is possible. We’ll first have to see what the status of the spacecraft is after perihelion and how well it is performing close to the comet, and later we will have to try and determine where on the surface we can have a touchdown.”

If this proposed scenario were played out, then the spacecraft would be commanded to spiral down to the comet over a period of about three months.

It is expected that science operations would continue throughout this period and be feasible up to very close to the end of mission, allowing Rosetta’s instruments to gather unique data at unprecedentedly close distances.

Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta’s Philae lander is provided by a consortium led by the German Aerospace Center, Cologne; Max Planck Institute for Solar System Research, Gottingen; French National Space Agency, Paris; and the Italian Space Agency, Rome. JPL, a Division of the California Institute of Technology, Pasadena, manages the U.S. contribution of the Rosetta mission for NASA’s Science Mission Directorate in Washington. JPL also built the MIRO and hosts its principal investigator, Samuel Gulkis.

The Southwest Research Institute (San Antonio and Boulder), developed the Rosetta orbiter’s IES and Alice instruments, and hosts their principal investigators, James Burch (IES) and Alan Stern (Alice).